PREFACE

This service manual is primarily intended for the use of qualified individuals specially trained and experienced in the service of this type of equipment and related system components.

Installation and service personnel are required by some states, counties or cities to be licensed. Persons not qualified shall not attempt to service this equipment or interpret this service manual.

SCOPE

This is not a basic refrigeration and air conditioning manual and does not therefore; cover the principles of refrigeration or air conditioning. The user of this manual should have already accomplished a thorough study of refrigeration and air conditioning.

WARNING

Improper installation may damage equipment, can create a hazard and will void the warranty.

The use of components not tested in combination with these units will void the warranty, may make the equipment in violation of state codes, may create a hazard and may ruin the equipment.

!WARNING – SHOCK HAZARD!

TO PREVENT THE POSSIBILITY OF SEVERE PERSONAL INJURY, DEATH OR EQUIPMENT DAMAGE DUE TO ELECTRICAL SHOCK, ALWAYS BE SURE THE POWER SUPPLY TO THE APPLIANCE IS DISCONNECTED BEFORE DOING ANY WORK ON THE APPLIANCE. THIS CAN NORMALLY BE ACCOMPLISHED BY SWITCHING THE BREAKER FOR THE AIR CONDITIONER TO OFF, DISCONNECTING ALL EXTERNAL ELECTRICAL CONNECTIONS AND CORDS, SWITCHING ON-BOARD ELECTRICAL GENERATORS AND INVERTORS TO OFF, AND REMOVING THE CABLE FROM EACH POSITIVE TERMINAL ON ALL STORAGE AND STARTING BATTERIES.

DANGER

SOME DIAGNOSTIC TESTING MAY BE DONE ON ENERGIZED CIRCUITS. ELECTRICAL SHOCK CAN OCCUR IF NOT TESTED PROPERLY. TESTING TO BE DONE BY QUALIFIED TECHNICIANS ONLY.

6757A7201
SERVICE TEST DEVICE

This test device is an invaluable aid in quickly diagnosing repairs to all Airxcel, Inc. roof top air conditioners produced after 1979.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Basic Components</td>
<td>5</td>
</tr>
<tr>
<td>II. Air Handling</td>
<td>5</td>
</tr>
<tr>
<td>III. Electrical Power Circuits</td>
<td>6</td>
</tr>
<tr>
<td>IV. Capacitors</td>
<td>7</td>
</tr>
<tr>
<td>V. Meters</td>
<td>7</td>
</tr>
<tr>
<td>VI. Free Delivery Ceiling Assemblies</td>
<td>8</td>
</tr>
<tr>
<td>VII. Service Problems and Their Possible Solutions</td>
<td>9</td>
</tr>
<tr>
<td>VIII. Typical Wiring Diagrams</td>
<td>10</td>
</tr>
</tbody>
</table>
BASIC COMPONENTS AND THEIR FUNCTIONS
REFRIGERATION SYSTEM DIAGRAM

Some systems will have a fan motor and a blower motor.
I. BASIC COMPONENTS

Compressor

The compressor is hermetically sealed and is not internally field serviceable. Inside the compressor housing is an electric motor driving a compressor.

Mounted on the top of the compressor under the terminal cover is an overload switch. Some models have internal overloads which are non-serviceable. The overload is connected in series with the common terminal. If the switch opens due to elevated amperage and/or temperature, it will interrupt power to the compressor. The overload will automatically reset when the temperature decreases sufficiently.

Condenser Coil

The purpose of the finned condenser coil is to transfer heat from the high pressure refrigerant to the air passing over the coil. As the air passes over the coil, the heat transfer will cause the air temperature to rise. Thus the condenser discharge air will be 15-35 degrees warmer than the condenser entering air.

Metering Device

The refrigerant enters the cap tube or bi-flow restrictor from the condenser as a warm high pressure liquid. As the refrigerant flows through the small diameter metering device, the pressure drops rapidly. As the refrigerant leaves the metering device, it is still mostly liquid; however, a small portion has changed to a vapor called flash gas. When the liquid refrigerant passes to the evaporator, it is at low side pressure and will therefore vaporize at low temperature as it picks up heat from the air passing over the evaporator coil.

Evaporator Coil

The purpose of the finned evaporator coil is to transfer the heat from the air passing over the coil to the cold low pressure refrigerant.

II. AIR HANDLING

Fan Motor

Most air conditioning units have one double shaft fan motor with a centrifugal blower wheel on one end for indoor conditioned air and a propeller fan to circulate outdoor air through the outdoor coil.

Some models use a centrifugal blower wheel on both ends of the motor.

Some models have an outdoor propeller fan motor and a separate indoor centrifugal blower motor.

An important step in installing a replacement fan motor is to check the direction of rotation before it is installed. On all models, the condenser fan or centrifugal blower wheel pulls the air through the coil.

Fan Motor Check Procedure

If a fan motor refuses to perform properly, it can be checked in the following manner:

1. Insure that the motor leads are connected according to the wiring diagram provided with the air conditioner.

2. Set the system controller to call for cooling operation. Temporarily restore power to the air conditioner taking care to avoid moving parts. If the motor will not start, while energized quickly spin the motor by hand in the usual direction of rotation. If the motor comes up to speed and continues to run, remove power and check the run capacitor. If a capacitor checker is unavailable, substitute a known good capacitor of the same rating. If the motor now comes up to speed without assistance, the original capacitor was defective. If the motor will still not start without assistance, the motor start winding is open or badly shunted and the motor must be replaced.

 Insure that all speeds function in a multi-speed motor.

 Rewire the replacement motor per the unit wiring diagram. On the 47000 Series fan motors or blower motors, the capacitors are potted lead type and must be replaced with potted lead style capacitors using water proof splices.
Filters

The filters should always be in place when the system is running. More important than their purpose of cleaning the air in the living space is the protection the filters give the evaporator coil. Without filters, a wet evaporator coil will quickly collect foreign material so as to prevent adequate air flow. Filters must be installed to completely fill the filter rack so that no air can flow around them or bypass them and carry dust, lint, etc. to the evaporator. If an evaporator has not been properly protected by its filter, the evaporator must be cleaned with detergent and water.

III. ELECTRIC POWER CIRCUITS

Safety

Voltage (electrical pressure), whether high or low, will not hurt you. It is the current through vital parts of your body that does the damage, and under the right conditions, 115 volts (domestic USA) is plenty to drive a deadly dose of current (amperes) through your body.

Another imminent danger from electric shocks in addition to electrocution is reaction. An electrical shock causes uncontrollable muscular contractions which can cause further injuries.

Remember that electricity can be very dangerous - but you can safely work with it. In order to be safe, you must know what you are doing. You must work deliberately and carefully. You must think safety before each move.

THINK SAFETY

Power Supply – from Commercial Utility

1) Wire Size

The power supply to the air conditioner must be wired through a HACR circuit breaker or time delay fuse.

The power supply must be 20 amperes and 12 AWG wire minimum.

See unit rating plate for other options.

2) Color Code

The electric power from the electric service panel should be delivered through a 3 conductor cable and the Service Technician should check to be sure the color code is correct. The electrician probably installed the cable with the colors according to code, but do not bet your life on it.

a) The wire with black insulation is the hot wire and there should be 115 volts (domestic USA) between it and either of the other wires. All switches, fuses, circuit breakers, disconnects, etc. should be in this line.

b) The wire with the white insulation is the neutral. There should be 115 volts (domestic USA) between the neutral and the hot (black) wire, but there should be 0 volts between the neutral and the ground (the green wire or the frame of the air conditioner).

c) The third wire may be covered with green insulation or it may be a bare metal wire. It is the ground wire. There must be 115 volts (domestic USA) between this wire and the hot (black) wire and 0 volts between it and the neutral (white) wire. The ground wire must be securely fastened to the air conditioner cabinet. A ground screw or pigtail lead wire is provided for this purpose.

3) Voltage

The voltage (electrical pressure) at the unit should be 115 volts (domestic USA) and all electrical components will perform best at the correct voltage. However, the voltage will vary and the air conditioning system will perform satisfactorily within plus or minus 10% of the rated (115) voltage (domestic USA). Therefore, the voltage has to be between 103.5 volts and 126.5 volts.
Power Supply – Generated by on-board motor generator

If the power supply for the recreational vehicle is supplied by an on-board motor generator, its wiring may be identical to the commercial power described above.

There are, however, some motor generators on which both the current carrying leads are insulated from the ground. That is to say; there is no grounded neutral, so there will be 115 volts (domestic USA) between the black and white leads, but there will be 0 volts between either lead and ground.

WARNING

The service technician must keep in mind when checking to make sure that the power is turned off. Check only between the hot (black) lead and the neutral (white) lead.

IV. CAPACITORS

Run Capacitor

The purpose of the run capacitor is to improve motor efficiency during running. The run capacitor is always connected between the start and run or main terminals of the motor.

On some older models, one of the terminals on the run capacitor will have a red dot (the identified terminal). The identified terminal should always be connected to the run or main terminal of the motor and to the neutral line.

Start Capacitor

Some models use a start capacitor and a start relay to give the compressor high starting torque. The compressor will, therefore, start against normal pressure difference (head pressure minus suction pressure) even when shut down for a short period of time. The start relay will disconnect the start capacitor when the motor reaches approximately 75% running speed.

V. METERS

Ammeter and Its Use

An ammeter is an instrument used for measuring electric current. This instrument has snap-around jaws that will allow you to read the current through a wire without detaching the wire from the system. These meters also have volt meter and ohm meter attachments so they are an excellent multi-purpose meter. **NO TECHNICIAN SHOULD EVER ATTEMPT A SERVICE CALL WITHOUT ONE.**

Ohm Meter and Its Use

An ohm meter is really a resistance meter that is calibrated in ohms. The ohm meter has its own power source, a small dry cell, which forces a small amount of current through a conductor via the meter probes. The meter must be calibrated to read 0 ohms when the probes are touched together each time it is used because as the dry cell loses its charge, the meter will get out of calibration.

If the probes of an ohm meter are attached to the terminals of a closed switch, the meter will read 0. This means that there is virtually no resistance to current flow through the switch. Now, if the switch is turned off, the contacts will be open and there will be a very high resistance. In fact, the resistance is so high it is an infinite number of ohms so we call this reading infinity.

Volt Meter and Its Use

If we attach one volt meter probe to the hot line and the other probe to the neutral line of a standard circuit, the meter reading will be the electromotive (electron moving) force or pressure difference between the two lines.
VI. FREE DELIVERY CEILING ASSEMBLIES

Selector Switch – Free Delivery Ceiling Assemblies

The selector switch is mounted on the left side of the interior ceiling assembly. The selector switch allows the unit to be operated on high to low blower only, or high to low blower with compressor operation for cooling. On heating and cooling models, the selector switch can also switch in the electric heater at low blower operation only.

To check the selector switch, remove wires from the terminals and rotate the switch to the proper position and read continuity as follows:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Switch Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-1-3</td>
<td>Lo Heat</td>
</tr>
<tr>
<td>L-1</td>
<td>Lo Fan</td>
</tr>
<tr>
<td>L-2</td>
<td>Hi Fan</td>
</tr>
<tr>
<td>L-1-4</td>
<td>Lo Cool</td>
</tr>
<tr>
<td>L-2-4</td>
<td>Hi Cool</td>
</tr>
</tbody>
</table>

*If you do not wish to remove the wires from each terminal, disconnect the 9 pin plug from the air conditioning unit.

Thermostat (Mechanical Rotary)

The thermostat (temperature controller) is mounted on the right side of the interior ceiling assembly. The thermostat controls the on-off cycle of the compressor when the selector switch is in the cooling position. On heating and cooling models, the thermostat controls the on-off cycle of the electric heater when the selector switch is in the heating position. The thermostat is actuated by sensing the temperature of the return air through the vent where the bulb is located. Terminal continuity should make and break if ambient air temperature is between 65 and 90 degrees F.

Heating Element

The heating element is a resistance heater of 1600 watts (5600 BTUH) capacity and is connected across the line when the selector switch is set for heating and the thermostat is calling for heat. The current draw of the heater (element only) will be 13.3 amperes at 120 volts (domestic USA models).

Limit Switch

The limit switch is a safety switch and is mounted in the heating element frame. It will open and break the circuit on temperature rise in case the air flow through the heater becomes low enough to cause the heater to overheat.
VII. SERVICE PROBLEMS AND THEIR POSSIBLE SOLUTIONS

SERVICE PROBLEMS WITH AIR CONDITIONER AND FREE DELIVERY CEILING ASSEMBLIES

The following list of service problems covers only some of the more common problems which may occur and lists only the more probable causes. In many instances, it will be necessary to use the wiring diagram in this manual to check out the electrical circuits step by step, starting at the power source.

<table>
<thead>
<tr>
<th>PROBLEMS</th>
<th>POSSIBLE CAUSES (REFER TO THE INDIVIDUAL COMPONENT CHECKOUT PROCEDURES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing Runs, No Compressor, No Fan, No Heat</td>
<td>No A/C Voltage, Selector Switch</td>
</tr>
<tr>
<td>Fan Runs, No Compressor Operation in the Cooling Mode</td>
<td>Insufficient Voltage to the Unit, Wiring, Thermostat, Start Capacitor, Run Capacitor, Start Relay, Open Overload, Selector Switch, Compressor</td>
</tr>
<tr>
<td>Heat or Compressor Runs, No Fan Operation</td>
<td>Wiring, Selector Switch, Fan Capacitor, Fan Motor</td>
</tr>
<tr>
<td>Fan Runs, No Electric Heat Element</td>
<td>Wiring, Thermostat, Selector Switch, Limit Switch, Outdoor Thermostat, Heating Element</td>
</tr>
<tr>
<td>Compressor Runs, Fan Runs, Insufficient Heat</td>
<td>Air Flow Restrictions, Outdoor Thermostat May Open Due to Low Ambient Temperature, (Undersized) Too Much Heat Loss in the Vehicle, Refrigeration System, Very Little or No Refrigerant Charge, Compressor</td>
</tr>
<tr>
<td>Compressor Runs, Fan Runs, Insufficient Cooling</td>
<td>Air Flow Restrictions, High Ambient Temperature, (Undersized) Too Much Heat Gain to the Vehicle, Refrigerant System, Very Little or No Refrigerant Charge, Compressor, (IF YOU HAVE NOT BEEN PROPERLY TRAINED IN REFRIGERATION SEALED SYSTEM REPAIRS, DO NOT ATTEMPT TO BREAK INTO THE SYSTEM.)</td>
</tr>
</tbody>
</table>
WIRING DIAGRAMS

9330X713, 9330X714 COOL ONLY
CEILING ASSEMBLIES

9330X715, 9330X716 HEAT/COOL CEILING ASSEMBLIES

PLUG CONNECTS TO UPPER UNIT. SEE DIAGRAM SUPPLIED WITH UPPER UNIT FOR ADDITIONAL WIRING.
DANGER! SHOCK HAZARD! AVIS!
DISCONNECT POWER SUPPLY BEFORE SERVICING ANY ELECTRICAL COMPONENT.

DEBRANCHES LES FILS ELECTRIQUES AVANT L'ENTRETIEN ET LE DE TOUT COMPARTIMENT OU ORANGE ELECTRIQUES.

1976C136
8000 AND 48000 SERIES ROOF MOUNT AIR CONDITIONERS

--- OPTIONAL START COMPONENTS AND WIRING. ---

PURPLE AND BLACK WIRES ARE SPLICED TOGETHER WHEN NO START RELAY IS USED.

--- OPTIONAL ACTUATOR ---

MARKED 'PUMP' IS A PUMP CAPACITOR.

9000 AND 49000 SERIES ROOF MOUNT AIR CONDITIONERS

--- OPTIONAL COMPONENTS AND WIRING. ---

PLUG CONNECTS TO CEILING ASSEMBLY. SEE DIAGRAM SUPPLIED WITH CEILING ASSEMBLY FOR ADDITIONAL WIRING.

DANGER! SHOCK HAZARD! AVISI!
DISCONNECT POWER SUPPLY BEFORE SERVICING ANY ELECTRICAL COMPONENT.
47000 SERIES ROOF MOUNT AIR CONDITIONERS

--- OPTIONAL COMPONENTS AND WIRING ---

--- COMPRESSOR & OVERLOAD ---

--- CONDENSATE PUMP MOTOR ---

--- DANGER! SHOCK HAZARD! ---
DISCONNECT POWER SUPPLY BEFORE SERVICING ANY ELECTRICAL COMPONENT.

--- AVIS! ---
DEBRANCHES LES FILS ELECTRIQUES AVANT L'ENTRETIEN ET LE DE TOUT COMPARTIMENT OU ORANGE ELECTRIQUES.

9 8 7 6 5 4 3 2 1
PLUG CONNECTS TO CEILING ASSEMBLY. SEE DIAGRAM SUPPLIED WITH CEILING ASSEMBLY FOR ADDITIONAL WIRING.

1976-0XX *